
Model: An accelerated failure time model [2] assuming a quadratic dose-response
shape for log-transformed time-to-event outcomes with a Weibull distribution that are
subject to right censoring with a fixed censoring time is assumed:

log $ = &' + &)* + &+*+ + ,-,
. = min($, 4) — observed time,

where 4 is censoring time, * is dose (without loss of generality assume that *~[0,1]), -
has a p.d.f. ; < = exp(< − exp < ) with A - = −B and EFG - = H+/6

Designs: For the above model, the D-optimal design for the most precise estimation
of the dose-response curve (assuming no censoring) is supported at doses of 0, ½,
and 1, with equal allocation proportions. If the outcomes are censored, then the
design still has 3 support points, but the design depends on model parameters
K = (&', &) , &+, ,) [1], and may be found numerically with a first order (exchange)
algorithm [3]. In practice, K is unknown, and a two-stage adaptive design can be
used. At Stage 1, a cohort of L()) patients is randomized according to the uniform
design. Then, before Stage 2, the design is updated based on outcome data from the
first cohort, and the second cohort of size L(+) is randomized according to the updated
design. In this work, one experimental scenario with 50% censoring is explored. We
consider:
• A single-stage design with uniform balanced dose allocation
• A single-stage design with the true (theoretical) D-optimal design
• A two-stage adaptive design (L())+ L(+)= 60),
• A multi-stage adaptive design with a stopping rule based on the D-criterion [1].

Patients randomized in cohorts of size 15 each. After each cohort is randomized,
we check if the determinant of the observed Fisher information matrix exceeded
some predefined threshold. If so, the randomization stops.

Randomization: The cohort sizes can be small in practice, and an experimenter must
ensure that actual allocation numbers are as close as possible to the targeted ones.
At the same time, the allocation must involve a random element to minimize the
potential for selection bias [4]. The following randomization procedures were
investigated :
• Completely Randomized Design (CRD)
• Permuted Block Design (PBD)

Chronological bias: we assume that there is an effect due to a time trend as in [5]

Selection bias: We adopt the approach described in [6] for a 3-arm randomization
setting. Based on a current disbalance in treatment assignments, we assign “sicker”
patients to a “better” doses and vise versa.

Evaluation: For single-stage and two-stage adaptive designs, D-efficiency:
DNOO L = P QR, K / P Q∗, K )/T, 

where Q∗ is the true D-optimal design, and QR is the design with the same support
points as Q∗ and allocation proportions obtained after randomization. For multi-stage
designs, the procedures are compared in terms of distribution of a sample size upon
termination.
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In dose-response studies with censored time-to-event outcomes, D-optimal designs
depend on the true model parameters and the number of censored outcomes. In order
to implement such a design in practice, an adaptive design that incorporates updated
knowledge about the dose-response curve at interim analyses can be used [1]. Further,
treatment allocation should involve randomization, which is essential to mitigate various
experimental biases and perform valid statistical inference at the end of the trial. Here,
we compare several randomization procedures and their impact on model estimation.
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Table 1 shows average Deff(n) for a
single-stage trial with locally D-optimal
(or uniform) design with different
randomization methods.
• CRD is less efficient than PBD for

small sample sizes.
• Uniform PBD is much less efficient

than optimized CRD and PBD.

Both the choice of an allocation design and a randomization procedure to
implement the target allocation impacts the quality of dose–response estimation,
especially for small samples. The choice of randomization procedure can be
crucial, especially for small populations.

Table 3 shows average Deff(n) of 2-
stage adaptive design strategies.
• CRDàCRD (i.e. CRD used in both

Stage 1 and Stage 2) results in 1–
2% loss compared to the
PBDàPBD strategy.

• When the total sample size is split
equally ( n()) = n(+) = 30 ), the 2-
stage adaptive designs have
highest DNOO L .

• Uniform designs (non-adaptive)
have worse performance.

CRD 
D-

optimal

PBD 
D-

optimal

PBD 
Uniform

L= 15 0.93 1.00 0.74
L= 30 0.97 1.00 0.74
L= 45 0.98 1.00 0.74
L= 60 0.99 1.00 0.74

CRDà
CRD

PBDà
PBD

PBD
Uniform

L()) = 15
L(+) = 45

0.79 0.81 0.74

L()) = 30
L(+) = 30

0.84 0.85 0.74

L()) = 45
L(+) = 15

0.82 0.83 0.74

Procedure
in Stage 1

Size of Stage 1 (Y(Z))

15 30 45

CRD 23.00% 4.00% 1.70%

PBD 12.30% 1.40% 0.30%

Table 4 shows distributions of the
sample size at study termination for two
adaptive design strategies and the
uniform allocation design.
• Designs have the same median

sample size, but CRDàCRD has
Larger maximum sample size.

• Non-optimal PBD uniform requires
several more cohorts to achieve the
same level of estimation accuracy as
for the adaptive designs

Multi-stage randomization procedure
Sample

size
statistics

CRD à
CRD à

PBD à
PBD à

PBD
Uniform

min 15 15 15
25% 30 30 90

median 45 45 210
75% 60 45 270
max 120 105 345

Figure 1 shows that the presence of selection bias has a negative impact on
quality of estimation: the designs tend to systematically underestimate the dose–
response curve at higher dose levels. The “least affected” design is PBD → PBD.
The Uniform PBD has the worst performance

We find that chronological bias had no impact on D-efficiency for any of the
considered design strategies—the average values of Deff(n) were identical in the
no-trend case and in the cases when the trend was present.

Table 2 shows, for two-stage adaptive
designs, the percentage of simulation
runs for which the MLE of [ could not
be obtained from the first stage data
(and, therefore, an estimate of the D-
optimal design for stage 2)
• the choice of the randomization

procedure is important.
• CRD results in a much larger

percentage of fails compared to
PBD.
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