Optimal Designs and Adaptive Randomization Techniques in Clinical Trials

Yevgen Ryeznik ${ }^{1}$, Oleksandr Sverdlov ${ }^{2}$
${ }^{1}$ Department of Mathematics, Uppsala University
${ }^{2}$ Novartis Pharmaceutical Corporation

CoSy Seminar, 28-NOV-2017

Outline

(1) Clinical Trials
(2) Adaptive Designs
(3) Adaptive Randomization
(4) Optimal Allocation
(5) Randomization procedures used to target optimal allocation

- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)

Outline

(1) Clinical Trials

Adaptive Designs

(3) Adaptive Randomization
(3) Optimal Allocation
(5) Randomization procedures used to target optimal allocation

- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)

Clinical Trials

Clinical trials are prospective biomedical or behavioural research studies on human subjects that are designed to answer specific questions about biomedical or behavioural interventions:

- novel vaccines,
- drugs,
- treatments,
- functional foods,
- dietary supplements,
- devices,
- new ways of using known interventions
generating safety and efficacy data.

Clinical Trials

- Typically randomized, double-blind, placebo and/or active controlled study designs.
- The most common objective of a randomized clinical trial is to test the hypothesis that a new treatment is better than the standard fo care in the population with the disease.

Clinical Drug Development

Very Expensive (!) Process

It costs $\sim \mathbf{\$ 2} .56 \boldsymbol{B}$ to bring a New Medicine to a Market!!! ${ }^{1}$

March 10, 2016

Tufts CSDD Assessment of Cost to Develop and Win Marketing Approval for a New Drug Now Published

BOSTON - March 10, 2016 - The most recent analysis by the Tufts Center for the Study of Drug Development of the average cost to develop and gain marketing approval for a new drug-pegged at $\$ 2.558$ billion-has been published in the Journal of Health Economics, it was announced today.

[^0]
Call for Innovation

Recognizing the challenges for modern drug development, the $\boldsymbol{F D} \boldsymbol{A}$ released the Critical Path Initiative to encourage use of innovative tools to streamline drug development:

- Biomarkers
- Innovative trial designs
- Pharmacometrics
- Bioinformatics

Food \& Drug Administration

Outline

(1) Clinical Trials

(2) Adaptive Designs
(3) Adaptive Randomization
(4) Optimal Allocation

- Randomization procedures used to target optimal allocation
- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)

Adaptive Designs: Motivation

The commonly used way of conducting a clinical trial:

- n subjects are involved in a study.
- $K \geq 2$ treatment arms are investigated (selected).
- Subjects are allocated to treatments according given proportions (equal in many cases).
- Given subjects' responses (efficacy variables), statistical inference on drug(s) properties is performed.

Adaptive Designs: Motivation

- At the planning stage of a trial, various assumptions (treatment effect, variance, dropout rate) must be made. Inaccurate assumptions increase risk of trial failure.
- Having an option to modify trial design adaptively, based on interim results can help reduced uncertainty and improve decision-making.
- Adaptation is a design feature, not a remedy for poor planning

Adaptive Designs: Motivation

Analogy Between Adaptive Designs and Swiss Army Knife ${ }^{2}$

(a) Simple scissor

- Optimal tool for a specific task.

(b) Swiss Army knife
- Versatile tool that combines several individual functions in a single unit.

Giant Swiss Army knife

- Functions for every perceivable need.
- Looks impressive.
- Highly impracticable.
- Very expensive.

[^1]
Types of Adaptation Available

- Adaptive allocation rule - change in the randomization procedure to modify the allocation proportion or the number of treatment arms
- Adaptive sampling rule - change in the number of study subjects
- Adaptive stopping rule - early stopping due to efficacy, futility, or safety
- Adaptive decision rule - change in the way decisions will be made about the trial (e.g., change of endpoint, change of test statistics, etc.)
In practice, combinations of adaptive rules are used.

Types of Adaptation Available

- Adaptive allocation rule - change in the randomization procedure to modify the allocation proportion or the number of treatment arms
- Adaptive sampling rule - change in the number of study subjects
- Adaptivé stopping rule - early stopping due to efficacy, futility, or safety
- Adaptive decision rule - change in the way decisions will be made about the trial (e.g., change of endpoint, change of test statistics, etc.)

In practice, combinations of adaptive rules are used.

Outline

(1) Clinical Trials

(2) Adaptive Designs
(3) Adaptive Randomization
(4) Optimal Allocation
(5) Randomization procedures used to target optimal allocation

- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)

Adaptive Randomization

Let us consider a clinical trial with n subjects involved.
Let

- $T_{1}, T_{2}, \ldots, T_{n}, \quad T_{j}=k \quad(j=1,2, \ldots, n ; \quad k=1,2, \ldots, K)$ be a sequence of treatment assignments;
- $X_{1}, X_{2}, \ldots, X_{n}, \quad X_{j}=x_{k} \quad(j=1,2, \ldots, n ; \quad k=1,2, \ldots, K)$ be a sequence of responses;
- $\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots, \boldsymbol{Z}_{n}, \quad \boldsymbol{Z}_{j}=\left(z_{j}^{(1)}, z_{j}^{(2)}, \ldots, z_{j}^{(r)}\right)^{\prime} \quad(j=1,2, \ldots, n)$ be a sequence of subjects' covariates;

Adaptive Randomization

- Allocation-Adaptive Randomization (AAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}\right)
$$

- Response-Adaptive Randomization (RAR)

- Covariate-Adaptive Randomization (CAR)

$$
P_{K}(j)=\Gamma_{\mathrm{T}}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}, Z_{1}, \ldots, Z_{j-1}, Z_{j}\right)
$$

- Covariate-Adjusted Response-Adaptive Randomization (CARA)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}, X_{1}, \ldots, X_{j-1}, \boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{j-1}, \boldsymbol{Z}_{j}\right)
$$

Adaptive Randomization

- Allocation-Adaptive Randomization (AAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}\right)
$$

- Response-Adaptive Randomization (RAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}, X_{1}, \ldots, X_{j-1}\right)
$$

- Covariate-Adaptive Randomization (CAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}, \boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{j-1}, \boldsymbol{Z}_{j}\right)
$$

- Covariate-Adjusted Response-Adaptive Randomization (CARA)

Adaptive Randomization

- Allocation-Adaptive Randomization (AAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}\right)
$$

- Response-Adaptive Randomization (RAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}, X_{1}, \ldots, X_{j-1}\right)
$$

- Covariate-Adaptive Randomization (CAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}, \boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{j-1}, \boldsymbol{Z}_{j}\right)
$$

- Covariate-Adjusted Response-Adaptive Randomization (CARA)

Adaptive Randomization

- Allocation-Adaptive Randomization (AAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}\right)
$$

- Response-Adaptive Randomization (RAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}, X_{1}, \ldots, X_{j-1}\right)
$$

- Covariate-Adaptive Randomization (CAR)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}, \boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{j-1}, \boldsymbol{Z}_{j}\right)
$$

- Covariate-Adjusted Response-Adaptive Randomization (CARA)

$$
P_{k}(j)=\operatorname{Pr}\left(T_{j}=k \mid T_{1}, \ldots, T_{j-1}, X_{1}, \ldots, X_{j-1}, \boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{j-1}, \boldsymbol{Z}_{j}\right)
$$

Three Steps to Develop an Optimal Randomization Procedure

- Derive an optimal allocation to satisfy selected experimental objectives.
- Choose randomization procedure(s) to implement the desired optimal allocation.
- Evaluate operating characteristics of the optimal randomization procedures under a variety of standard to worst-case scenarios

Select one that has best performance for use in practice

Outline

(1) Clinical Trials

(2) Adaptive Designs
(3) Adaptive Randomization
4) Optimal Allocation
(5) Randomization procedures used to target optimal allocation

- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)

Optimal Allocation

Consider a clinical trial with $K \geq 2$ treatment arms for which we want to find an optimal design. Then, one has to perform the following steps:
(1) Study objectives are formulated as a mathematical problem (usually as an optimization problem)
 of the problem under constraints:

- $\sum_{k=1}^{K} \rho_{k}^{*}=1$
(-) A randomization procedure has to be constructed:
- it sequentially allocates subjects to treatments.
- the allocation proportion vector

Optimal Allocation

Consider a clinical trial with $K \geq 2$ treatment arms for which we want to find an optimal design. Then, one has to perform the following steps:
(1) Study objectives are formulated as a mathematical problem (usually as an optimization problem).
 of the problem under constraints:

- $\sum_{k=1}^{K} \rho_{k}^{*}=1$
(3) A randomization procedure has to be constructed:
- it sequentially allocates subjects to treatments.
- the allocation proportion vector

Optimal Allocation

Consider a clinical trial with $K \geq 2$ treatment arms for which we

 want to find an optimal design. Then, one has to perform the following steps:(1) Study objectives are formulated as a mathematical problem (usually as an optimization problem).
(2) Optimal allocation $\boldsymbol{\rho}^{*}=\left(\rho_{1}^{*}, \rho_{2}^{*}, \ldots, \rho_{K}^{*}\right)$ is found as a solution of the problem under constraints:

- $0 \leq \rho_{k}^{*} \leq 1, \quad k=1,2, \ldots, K$.
- $\sum_{k=1}^{K} \rho_{k}^{*}=1$.
(3) A randomization procedure has to be constructed:
- it sequentially allocates subjects to treatments.
- the allocation proportion vector

Optimal Allocation

Consider a clinical trial with $K \geq 2$ treatment arms for which we want to find an optimal design. Then, one has to perform the following steps:
(1) Study objectives are formulated as a mathematical problem (usually as an optimization problem).
(antimal allocation $\rho^{*}=\left(\rho_{1}^{*}, \rho_{2}^{*}, \ldots, \rho_{K}^{*}\right)$ is found as a solution of the problem under constraints:

- $\sum_{k=1}^{K} \rho_{k}^{*}=1$
(3) A randomization procedure has to be constructed:
- it sequentially allocates subjects to treatments.
- the allocation proportion vector

$$
\left(n_{1} / n, n_{2} / n, \ldots, n_{K} / n\right) \approx\left(\rho_{1}^{*}, \rho_{2}^{*}, \ldots, \rho_{K}^{*}\right)
$$

Optimal Allocation: Example \#1

- Two treatment groups: 1 and 2 .
- $n=n_{1}+n_{2}$ - total sample size (fixed).
- $\rho^{*} \in(0,1)$ - optimal allocation proportion for treatment 1 (to be determined) such that $n_{1}=n \rho^{*}$ and $n_{2}=n\left(1-\rho^{*}\right)$.
- $Y_{j k} \sim \operatorname{Normal}\left(\mu_{k}, \sigma^{2}\right)$ - response of the j th $(j=1,2, \ldots, n)$ patient in group $k(k=1,2)$.
- Objective: Maximize power of t-test for testing $H_{0}: \mu_{1}=\mu_{2}$.
- Solution: $\rho^{*}=0.5$ (equal number of patients should be assigned to treatments 1 and 2).

Optimal Allocation: Example \#2

- Two treatment groups: 1 and 2 .
- $n=n_{1}+n_{2}$ - total sample size (fixed).
- $Y_{j k} \sim \operatorname{Bernoulli}\left(p_{k}\right)$ - binary response of the j th $(j=1,2, \ldots, n)$ patient in group $k(k=1,2)$. Here, $p_{k}=\operatorname{Pr}\left(Y_{j k}=1\right)-$ probability of success.
- Objective 1: Maximize power of Z-test for testing $H_{0}: p_{1}=p_{2}$.
- Solution 1: $\rho^{*}=\frac{\sqrt{p_{1} q_{1}}}{\sqrt{p_{1} q_{1}}+\sqrt{p_{2} q_{2}}}$.
- Objective 2: Minimize expected number of treatment failures subject to fixed power of Z-test under $H_{0}: p_{1} \neq p_{2}$.
- Solution 2: $\rho^{*}=\frac{\sqrt{p_{1}}}{\sqrt{p_{1}+\sqrt{p_{2}}}}$

Optimal Allocation: Example \#2

- Two treatment groups: 1 and 2 .
- $n=n_{1}+n_{2}$ - total sample size (fixed).
- $Y_{j k} \sim \operatorname{Bernoulli}\left(p_{k}\right)$ - binary response of the j th $(j=1,2, \ldots, n)$ patient in group $k(k=1,2)$. Here, $p_{k}=\operatorname{Pr}\left(Y_{j k}=1\right)-$ probability of success.
- Objective 2: Minimize expected number of treatment failures subject to fixed power of Z-test under $H_{0}: p_{1} \neq p_{2}$.
- Solution 2: $\rho^{*}=\frac{\sqrt{p_{1}}}{\sqrt{p_{1}+\sqrt{p_{2}}}}$.

Optimal Allocation: Example \#2

Optimal Allocation: Example \#3

D-optimal design for dose-finding studies with TTE outcomes

- $T \sim W \operatorname{Weibull}(\lambda, k), \quad f_{T}(t)=\frac{k}{\lambda}\left(\frac{t}{\lambda}\right)^{k-1} \exp \left(-\left(\frac{t}{\lambda}\right)^{k}\right)$
- Accelerated Failure Time (AFT) model:

$$
\begin{aligned}
\log (T) & =\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+b \varepsilon \\
\lambda & =\exp \left(\beta_{0}+\beta_{1} x+\beta_{2} x^{2}\right), \quad b=k^{-1} \\
\varepsilon \sim f_{\varepsilon}(u) & =\exp (-\exp (-u))-\text { extreme value distribution } \\
x \in \mathcal{X} & =[0,1] \text { is a treatment dose }
\end{aligned}
$$

- The aim is to define a dose-response curve (Median TTE $)$

$$
\operatorname{Median}(T \mid x)=\exp \left(\beta_{0}+\beta_{1} x+\beta_{2} x^{2}\right) \log ^{b}(2)
$$

Optimal Allocation: Example \#3

Optimal Allocation: Example \#3

Optimal design vs. censoring time: $\left(\beta_{0}=1.9, \beta_{1}=0.6, \beta_{2}=2.8, b=0.57721\right)$

Optimal Allocation: Example \#3

colour $[25 \%, 75 \%] \square$ simulated \square true

Optimal Allocation: Summary

- Choice of the target allocation ratio stems from the study objectives.
- Unequal allocation designs may be preferred over equal allocation designs for statistical (e.g. power/efficiency) and ethical reasons.
- Practical implementation of the chosen target allocation requires a careful choice of randomization (which can promote selected study objectives while protecting study from experimental bias)

Outline

(1) Clinical Trials

(2) Adaptive Designs
(3) Adaptive Randomization

- Optimal Allocation
(5) Randomization procedures used to target optimal allocation
- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)

Outline

(1) Clinical Trials

(2) Adaptive Designs
(3) Adaptive Randomization

- Optimal Allocation
(5) Randomization procedures used to target optimal allocation
- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)

The following randomization procedures target allocation ratio

$$
\begin{aligned}
w & =\left(w_{1}: w_{2}: \ldots: w_{K}\right), \quad w_{k} \in \mathbb{N}, \quad G C D\left(w_{1}, w_{2}, \ldots, w_{K}\right)=1 \\
\boldsymbol{\rho}^{*} & =\left(\rho_{1}, \rho_{2}, \ldots, \rho_{K}\right), \quad \rho_{k}=\frac{w_{k}}{\sum_{i=1}^{K} w_{k}}
\end{aligned}
$$

- Permuted Block Design (PBD)
- Block Urn Design ($B U D$)
- Mass Weighted Urn Design ($M W U D$)
- Drop-the-Loser Urn Design ($D L U D$)
- Doubly-Adaptive Biased Coin Design ($D B C D$)
- Maximum Entropy Constraint Balance Randomization (MaxEnt)

The following randomization procedures target allocation ratio

$$
\begin{aligned}
w & =\left(w_{1}: w_{2}: \ldots: w_{K}\right), \quad w_{k} \in \mathbb{N}, \quad G C D\left(w_{1}, w_{2}, \ldots, w_{K}\right)=1 \\
\rho^{*} & =\left(\rho_{1}, \rho_{2}, \ldots, \rho_{K}\right), \quad \rho_{k}=\frac{w_{k}}{\sum_{i=1}^{K} w_{k}}
\end{aligned}
$$

- Permuted Block Design (PBD)
- Block Urn Design ($B U D$)
- Mass Weighted Urn Design ($M W U D$)
- Drop-the-Loser Urn Design ($D L U D$)
- Doubly-Adaptive Biased Coin Design ($D B C D$)
- Maximum Entropy Constraint Balance Randomization (MaxEnt)
All the designs depend on a tweak parameter the choice of which is an open question!

Charachteristics of randomization procedure:

- Imbalance

$$
\operatorname{Imb}(n)=\frac{1}{n} \sum_{j=1}^{n} \sqrt{\sum_{k=1}^{K}\left(N_{k}(j)-j \rho_{k}\right)^{2}}
$$

- Forcing Index

$$
F I(n)=\frac{1}{n} \sum_{j=1}^{n}\left(\sum_{k=1}^{K}\left(P_{k}(j)-\rho_{k}\right)^{2}\right)
$$

Imbalance plot

procedure
BUD (2)

* CRD
- DBCD (4)
- DL (4)
\rightarrow MaxEnt (0.5) \triangle MWUD (4) ${ }^{*}$ PBD (1)

Forcing index plot

Imbalance vs. Forcing index

Distributions of final allocation proportions

Allocation ratio preserving (ARP) property

Outline

(1) Clinical Trials

(2) Adaptive Designs
(3) Adaptive Randomization

- Optimal Allocation
(5) Randomization procedures used to target optimal allocation
- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)

Let us consider a dose-finding trial with time-to-event outcomes and n subjects involved.

$$
\operatorname{Median}(T \mid x)=\exp \left(\beta_{0}+\beta_{1} x+\beta_{2} x^{2}\right) \log ^{b}(2)
$$

A D-optimal optimal allocation as well as optimal treatments (doses) are found as a solution of the following optimization problem

$$
\begin{array}{ll}
\left(\boldsymbol{x}^{*}, \boldsymbol{\rho}^{*}\right) & =\arg \max _{(\boldsymbol{x}, \boldsymbol{\rho})} \operatorname{det}|\boldsymbol{F I M}(\boldsymbol{x}, \boldsymbol{\rho}, \boldsymbol{\theta})|, \quad \boldsymbol{\theta}=\left(\beta_{0}, \beta_{1}, \beta_{2}, b\right) \\
& x_{k} \in\left[d_{\text {min }}, d_{\text {max }}\right], \quad k=1,2 \ldots, K \\
\text { s.t. } & \rho_{k} \in[0,1], \quad k=1,2 \ldots, K \\
& \sum_{k=1}^{K} \rho_{k}=1
\end{array}
$$

$\boldsymbol{R A R}$

"Ideal" case

- All subjects are available.
- They are just splitted into two groups

$$
n_{1} \approx n \rho_{1}^{*}, \quad n_{2} \approx n \rho_{2}^{*}, \quad n_{3} \approx n \rho_{3}^{*} .
$$

(we assume that n_{1}, n_{2} and n_{3} are rounded up to integers, if necessary)

However, there are potential problems with this approach:

- All n subjects are unavailable at the beginning of the trial.
- Model parameters $\boldsymbol{\theta}=\left(\beta_{0}, \beta_{1}, \beta_{2}, b\right)$ are unknown at the beginning of the trial. Basically, the trial itself is conducted to estimate $\boldsymbol{\theta}$ (and perform other statistical analysis, such as, for example, hypothesis testing of $H_{0}: \beta_{1}=\beta_{2}=0$)
- Subjects cannot be just "split" into groups. They must be randomized in order to avoid selection bias.
Randomization is an essential component of any comparative experiment.
- In practice, the n subjects enter the trial sequentially and must be immediately randomized to one of $K(=3)$ treatments.
- The enrolled subjects generate data, and these data can be used to sequentially estimate the model parameters $\boldsymbol{\theta}=\left(\beta_{0}, \beta_{1}, \beta_{2}, b\right)$.
- Thus, we construct response-adaptive randomization procedures which converges to the desired optimal allocations.

Dose-finding studies for TTE outcomes

Adaptive design

Outline

(1) Clinical Trials

(2) Adaptive Designs
(3) Adaptive Randomization

- Optimal Allocation
(5) Randomization procedures used to target optimal allocation
- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)
- In most randomized phase III clinical trials patients are heterogeneous.
- Linear regression model with constant variance for the primary outcome - the most efficient allocation is one for which treatment numbers are balanced, both overall and across selected covariates.
- Heteroscedastic or nonlinear model for the primary outcome - the concept of balance is different from the linear model case.
- Covariate-balanced response-adaptive design.

CAR

Why is it important to force balance over known covariates? Let us consider a model where responses follow a linear regression model with constant varince

$$
\boldsymbol{Y}=\mu+\alpha \boldsymbol{t}+\beta \boldsymbol{z}_{1}+\varepsilon
$$

where

- μ is the overall mean.
- α is the treatment effect.
- β is the covariate effect.
- \boldsymbol{t} is an n-vector of treatment assignments (whose elements are 1 or -1).
- \boldsymbol{z}_{1} is an n-vector of covariate values.
- $\varepsilon \sim N\left(0, \sigma^{2} \boldsymbol{I}\right)$.

CAR

Why is it important to force balance over known covariates? Let

- $\boldsymbol{\theta}=(\mu, \alpha, \beta)$ be a vector of unknown parameters;
- $\boldsymbol{X}=\left[\mathbf{1}, \boldsymbol{t}, z_{1}\right]$ be a design matrix (for simplicity, assume that \boldsymbol{z}_{1} is centred and scaled, that is, $\mathbf{1} \boldsymbol{z}_{1}^{\prime}=0$, and $\boldsymbol{z}_{1} \boldsymbol{z}_{1}^{\prime}=1$);
- $\widehat{\boldsymbol{\theta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y}$. be the least square estimator of $\boldsymbol{\theta}$;

The variance-covariance matrix of $\widehat{\boldsymbol{\theta}}$ is given by

$$
\operatorname{Var}[\widehat{\boldsymbol{\theta}}]=\sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}
$$

CAR

Why is it important to force balance over known covariates? Particularly,

$$
\operatorname{Var}[\widehat{\alpha}]=\frac{\sigma^{2}}{n-\left(\boldsymbol{z}^{\prime} \boldsymbol{t}\right)^{2}-\left(\mathbf{1}^{\prime} \boldsymbol{t}\right)^{2} / n}
$$

It is minimized when both

- $\boldsymbol{z}^{\prime} \boldsymbol{t}=0$ (balance over covariate).
- $\mathbf{1}^{\prime} \boldsymbol{t}=0$ (balanced treatment assignments).

CAR

CAR procedures

- Pocock-Simon's "minimization" procedure (1975).
- Atkinson's biased coin design (1982).
- Covariate-balanced randomization design (Yuan and Huang, 2010)

Outline

(1) Clinical Trials

(2) Adaptive Designs
(3) Adaptive Randomization

- Optimal Allocation
(5) Randomization procedures used to target optimal allocation
- Allocation-Adaptive Randomization (AAR)
- Response-Adaptive Randomization (RAR)
- Covariate-Adaptive Randomization (CAR)
- Covariate-Adjusted Response-Adaptive Randomization (CARA)

CARA

Two main reasons to consider $\boldsymbol{C A R A}$:

- Statistical: For nonlinear and heteroscedastic models, optimal allocation may not be balanced across treatment arms.
- Ethical: The degree and direction of treatment effect may differ for patient subgroups within a treatment \Rightarrow increase probability of assigning the treatment that is most efficacious given the patient's covariate profile (personalized treatment).

CARA

CARA Randomization for Survival Trials ${ }^{3}$

- n patients are enrolled sequentially and are randomized to treatments 1 and 2.
- For the j-th patient, survival time $T_{j k}$, conditional on covariates z_{i} is exponential with mean

$$
\lambda_{k}\left(\boldsymbol{z}_{j}\right)=\exp \left(\boldsymbol{\theta}_{k}^{\prime} \boldsymbol{z}_{j}\right), \quad k=1,2,
$$

where $\theta_{k}=\left(\theta_{k 0}, \theta_{k 1}, \ldots, \theta_{k p}\right)^{\prime}$ and $\boldsymbol{z}_{j}=\left(1, z_{1 j}, \ldots, z_{p j}\right)^{\prime}$.

- $T_{j k}$ is subject to independent right-censoring with $\tau_{j}>0$.
- $t_{j k}=\min \left(T_{j k}, \tau_{j}\right)$,
- $\delta_{j k}=\mathbf{1}_{t_{j k}=T_{j k}}$,
- $\left(t_{j k}, \delta_{j k}\right)$ are independent, $j=1, \ldots, n_{k}, \quad k=1,2$

[^2]
CARA

Example: Redesigning a Survival Trial ${ }^{3}$ (cetuximab trial in advanced colorectal cancer)

- In a 21-month period, $n=572$ eligible patients were randomized at a 1:1 ratio among TRT 1 (cetuximab plus best supportive care) and TRT 2 (best supportive care alone).
- The primary endpoint was overall survival (OS).
- Effectiveness of cetuximab was significantly associated with K-ras mutation status:
- Patients with wild-type K-ras tumors benefited from cetuximab (median OS, 9.5 vs. 4.8 months; HR for death, 0.55).
- Patients with a colorectal tumor bearing mutated K-ras did not benefit from cetuximab (median OS, 4.6 vs. 4.5 months; HR for death, 0.98).

[^3]
Simulation Study Results (10,000 simulation runs)

$n=572$	Pocock-Simon	CARA	RAR
N_{A} / n (S.D.)	$0.500(0.002)$	$0.588(0.037)$	$0.583(0.039)$
$N_{\mathrm{A} 0} \mid N_{\mathrm{B} 0}$ (S.D.)	$169 \mid 169(1)$	$211 \mid 127(16)$	$197 \mid 141(14)$
$N_{\mathrm{A} 1} \mid N_{\mathrm{B} 1}$ (S.D.)	$117 \mid 117(1)$	$125 \mid 109(13)$	$137 \mid 97(11)$
Deaths (S.D.)	$372(11)$	$362(12)$	$366(12)$
Total Time (S.D.)	$3076(106)$	$3155(113)$	$3132(112)$
$\hat{\theta}_{\mathrm{A} 0}$ (S.D.)	$2.62(0.11)$	$2.62(0.10)$	$2.62(0.10)$
$\hat{\theta}_{\mathrm{A} 1}$ (S.D.)	$-0.68(0.16)$	$-0.68(0.15)$	$-0.68(0.15)$
$\hat{\theta}_{\mathrm{B} 0}$ (S.D.)	$1.87(0.09)$	$1.86(0.11)$	$1.87(0.10)$
$\hat{\theta}_{\mathrm{B} 1}$ (S.D.)	$0.02(0.14)$	$0.03(0.16)$	$0.02(0.16)$

- Because of treatment-covariate interaction, CARA resulted in greater skewing to A in the wild-type K-ras subgroup than in the mutated K-ras subgroup, whereas RAR had similar degree of skewing in the subgroups.
- CARA and RAR had, on average, 10 and 6 fewer deaths and greater total survival time than the Pocock-Simon design.
- All three procedures had the same power and very similar M.L.E.'s.

Books

CIM Course for Master/PhD students (Period IV 2018)

(1) Introduction to clinical trials, adaptive designs, optimal adaptive randomization procedures.
(2) Choice of a target allocation for a multi-arm clinical trial.
(3) Adaptive randomization designs to implement optimal allocation:

- Allocation-adaptive randomization
- Covariate-adaptive randomization
- Response-adaptive randomization
- Covariate-adjusted response-adaptive randomization
(1) Case studies (with examples in R) and practical aspects of implementing adaptive randomization

[^0]: ${ }^{1}$ The Tufts Center for the Study of Drug Development (independent, academic, non-profit research group at Tufts University in Boston, Massachusetts).

[^1]: ${ }^{2}$ Bretz F, Gallo P, Maurer W (2017) The Swiss Army knife among clinical trial designs? Clinical Trials 14(5), 417-424

[^2]: ${ }^{3}$ Sverdlov O., Rosenberger W.F., Ryeznik Y. (2013) "Utility of covariate-adjusted response-adaptive randomization in survival trials" Statistics in Biopharmaceutical Research 5(1), p. 38-53.

[^3]: ${ }^{3}$ Karapetis, C. S., Khambata-Ford, S., Jonker, D. J., et al. (2008). "K-ras mutations and benefit from cetuximab in advanced colorectal cancer". The New England Journal of Medicine, 359, p. 17571765

