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@ Clinical Trials
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@ Randomization procedures used to target optimal allocation
o Allocation-Adaptive Randomization (AAR)
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Pt Clinical Trials

Clinical trials are prospective biomedical or behavioural research studies
on human subjects that are designed to answer specific questions
about biomedical or behavioural interventions:

@ novel vaccines,
o drugs,

o treatments,

functional foods,

dietary supplements,
o devices,
e new ways of using known interventions

generating safety and efficacy data.
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Pt Clinical Trials

e Typically randomized, double-blind, placebo and/or active
controlled study designs.

@ The most common objective of a randomized clinical trial is to
test the hypothesis that a new treatment is better than the
standard fo care in the population with the disease.
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Very Expensive (!) Process

It costs ~$2.56B to bring a New Medicine to a Market!!!!

March 10, 2016

Tufts CSDD Assessment of Cost to Develop and Win Marketing Approval for a New Drug Now
Published

BOSTON — March 10, 2016 — The most recent analysis by the Tufts Center for the Study of Drug Development of the

average cost to develop and gain marketing approval for a new drug—pegged at $2.558 billion—has been published in
the Journal of Health Economics, it was announced today.

1
The Tufts Center for the Study of Drug Development (independent, academic, non-profit research
group at Tufts University in Boston, Massachusetts).

” Ryeznik DS 1
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UNNERATET Call for Innovation

Recognizing the challenges for modern drug development, the FDA
released the Critical Path Initiative to encourage use of innovative
tools to streamline drug development:

o Biomarkers @

o Innovative trial designs

o Pharmacometrics

Critical Path Initiative
Food & Drug Administration

e Bioinformatics

Y Ryeznik & O Sverdlov Optimal Designs & Adaptive Randomization 28-NOV-2017



UNIVERSITET Outline

@ Adaptive Designs
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NI Adaptive Designs: Motivation

The commonly used way of conducting a clinical trial:

@ n subjects are involved in a study.
e K > 2 treatment arms are investigated (selected).

@ Subjects are allocated to treatments according given proportions
(equal in many cases).

e Given subjects’ responses (efficacy variables), statistical
inference on drug(s) properties is performed.
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NI Adaptive Designs: Motivation

o At the planning stage of a trial, various assumptions (treatment
effect, variance, dropout rate) must be made. Inaccurate
assumptions increase risk of trial failure.

e Having an option to modify trial design adaptively, based on
interim results can help reduced uncertainty and improve
decision-making.

o Adaptation is a design feature, not a remedy for poor planning
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UNVERITET Adaptive Designs: Motivation

Analogy Between Adaptive Designs and Swiss Army Knife?

(a) Simple scissor (b) Swiss Army knife Giant Swiss Army knife
@ Optimal tool for a @ Versatile tool that @ Functions for every
specific task. combines several perceivable need.
individual functions @ Looks impressive.

in a single unit. @ Highly impracticable.

@ Very expensive.

2Bretz F, Gallo P, Maurer W (2017) The Swiss Army knife among clinical trial designs? Clinical
Trials 14(5), 417-424
Y Ryeznik & O S ov
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oAET Types of Adaptation Available

o Adaptive allocation rule — change in the randomization
procedure to modify the allocation proportion or the number of
treatment arms

o Adaptive sampling rule — change in the number of study
subjects

o Adaptive stopping rule — early stopping due to efficacy,
futility, or safety

o Adaptive decision rule — change in the way decisions will be
made about the trial (e.g., change of endpoint, change of test
statistics, etc.)

In practice, combinations of adaptive rules are used.
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ONVERSITET Types of Adaptation Available

o Adaptive allocation rule — change in the randomization
procedure to modify the allocation proportion or the number of
treatment arms

In practice, combinations of adaptive rules are used.
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UNESITEr Adaptive Randomization

Let us consider a clinical trial with n subjects involved.
Let

OTl,TQ,...,Tn, TJ:I{,‘ (j:1,2,...,7’L; k:1,2,...,K)
be a sequence of treatment assignments;

OXl,XQ,...,Xn, Xj:xk (j:1,2,...,n; ]{JZl,Q,...,K)
be a sequence of responses;

!
o Z1.Zo,.... %, Zj:(zjﬁl),z]@),...,zj(’")) (j=1,2,..

D)
be a sequence of subjects’ covariates;

Y Ryeznik & O Sverdlov
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UNVESITET Adaptive Randomization

o Allocation-Adaptive Randomization (AAR)

Pu(j) = Pr(T; = k|T1, ..., Tj_1).
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UNESITEr Adaptive Randomization

o Allocation-Adaptive Randomization (AAR)

Py(j) =Pr(T; = k|Ty,...,Tj—1).

o Response-Adaptive Randomization (RAR)
Pu(j) = Pr(T; = k|T1, ..., Tj_1, X1, ..., X;_1)
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UNESITEr Adaptive Randomization

o Allocation-Adaptive Randomization (AAR)

Py(j) =Pr(T; = k|Ty,...,Tj—1).

o Response-Adaptive Randomization (RAR)
Pu(j) = Pr(Tj = k[ T1,..., Tj—1, X1, ..., X;_1)

e Covariate-Adaptive Randomization (CAR)

P( ) PI‘( _k|T1,...,Tj,l,Zl,...,Zj,l,Zj)
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Adaptive Randomization

o Allocation-Adaptive Randomization (AAR)
Py(j) =Pr(T; = k|Ty,...,Tj—1).
o Response-Adaptive Randomization (RAR)
Pu(j) = Pr(T; = k|T1, ..., Tj_1, X1, ..., X;_1)
e Covariate-Adaptive Randomization (CAR)
Pu(j) = Pr(Tj = k|Ty, ..., Tj—1, Zv, ..., Zj—1, Z;)

o Covariate-Adjusted Response-Adaptive Randomization
(CARA)

P( ) Pr( —k‘Tla---aT’j—laleu-,Xj—l;Zla--ij—lazj)
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NI Three Steps to Develop an Optimal

Randomization Procedure

@ Derive an optimal allocation to satisfy selected experimental
objectives.

e Choose randomization procedure(s) to implement the desired
optimal allocation.

o Evaluate operating characteristics of the optimal
randomization procedures under a variety of standard to
worst-case scenarios

Select one that has best performance for use in practice
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DT Optimal Allocation

Consider a clinical trial with K > 2 treatment arms for which we
want to find an optimal design. Then, one has to perform the
following steps:
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DT Optimal Allocation

@ Study objectives are formulated as a mathematical problem
(usually as an optimization problem).
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DT Optimal Allocation

@ Optimal allocation p* = (p7, p5, ..., pj) is found as a solution
of the problem under constraints:

e 0<pi<1, k=1,2,... K.

K«
° X h1Pr=1
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DT Optimal Allocation

@ A randomization procedure has to be constructed:
e it sequentially allocates subjects to treatments.

e the allocation proportion vector

~ * ok *
(nl/nvnz/n7"'anK/n) ~ (p17p27~-.apK)'
Optimal Designs & Adaptive Randomization 28-NOV-2017
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UNIVERSITET Optimal Allocation: Example #1

Two treatment groups: 1 and 2.

@ n = ny + ny — total sample size (fixed).

e p* € (0,1) — optimal allocation proportion for treatment 1 (to be
determined) such that n; = np* and ny = n(1 — p*).

e Yji ~ Normal(pg, 0*) — response of the jth (j =1,2,...,n)
patient in group k (k =1,2).

o Objective: Maximize power of t-test for testing Hp : p1 = po.

e Solution: p* = 0.5 (equal number of patients should be assigned

to treatments 1 and 2).
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UNIVERSITET Optimal Allocation: Example #2

o Two treatment groups: 1 and 2.
e n =nj + ng — total sample size (fixed).

e Y}, ~ Bernoulli(py) — binary response of the jth (j =1,2,...,n)
patient in group k (k =1,2). Here, p, = Pr (Y, =1) -
probability of success.

o Objective 1: Maximize power of Z-test for testing Hy : p1 = po.

e Solution 1: p* = %.

Y Ryeznik & O Sv Optimal Designs & Adaptive Randomization 28-NOV-2017
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UNIVERSITET Optimal Allocation: Example #2

o Two treatment groups: 1 and 2.
e n =nj + ng — total sample size (fixed).

e Y}, ~ Bernoulli(py) — binary response of the jth (j =1,2,...,n)
patient in group k (k =1,2). Here, p, = Pr (Y, =1) -
probability of success.

e Objective 2: Minimize expected number of treatment failures
subject to fixed power of Z-test under Hy : p1 # po.

o Solution 2: p* = \/ITI/E/E'
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Optimal Allocation: Example #2

Equal Allocation Optimal Allocation
1.00-
0.75-
Number of Failures
=1—10
N 11-20
2 0.50- [121-30
113140
[H41-50
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0.00-
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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Optimal Allocation: Example #3

D-optimal design for dose-finding studies with TTE
outcomes

o T~ Weibull(\ k), fr(t) =% (£)" " exp (7 (;)k>
o Accelerated Failure Time (AFT) model:

log (T) = By + Bra + Baa® + be
A=exp (Bo + Bz + Boz?), b=k""

e ~ fe(u) = exp (—exp (—u)) — extreme value distribution

x € X =[0,1] is a treatment dose
@ The aim is to define a dose-response curve (Median TTE)
Median(T|z) = exp (Bo + 1z + Boz?) log® (2)
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N Optimal Allocation: Example #3
Patient 5 >-i-censored
Patient 4 >-tensored
O
Patient 3 » Nevent

Patient 1

T, r, == T3 T5 T,
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UNIVERSITET Optimal Allocation: Example #3

Optimal design vs. censoring time: (8o = 1.9,81 = 0.6,52 = 2.8,b = 0.57721)

1.0-
.....
..-O."'
.--""
<}
805
- ......................
°
o°®
[ ]
[ ]
[ ]
..
0.0-
° 50 100 120

censoring time
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UNIVERSITET Optimal Allocation: Example #3

Dose-response fit, response rate = 50%: (fo =1.9,61 = 0.6,82 = 2.8,b=17)

D—-optimal design Uniform design
300-

Median TTE
g

[y
o
o

0.00 025 050 0.75 1.000.00 025 050 0.75
Dose

colour [25%, 75%] [Hsimulated Htrue
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DT Optimal Allocation: Summary

o Choice of the target allocation ratio stems from the study
objectives.

o Unequal allocation designs may be preferred over equal
allocation designs for statistical (e.g. power/efficiency) and
ethical reasons.

e Practical implementation of the chosen target allocation requires
a careful choice of randomization (which can promote
selected study objectives while protecting study from
experimental bias)
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@ Randomization procedures used to target optimal allocation
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UNIVERSITET Outline

@ Randomization procedures used to target optimal allocation
o Allocation-Adaptive Randomization (AAR)
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The following randomization procedures target allocation ratio

w=(wy:wy:...:wg), wr €N, GCD(wi,wy,...,wg)=1,
* Wk
p = (p1,p2,-- - PK)s Pk= ——

Zizlwk

e Permuted Block Design (PBD)

Block Urn Design (BUD)

Mass Weighted Urn Design (MW U D)
Drop-the-Loser Urn Design (DLU D)
Doubly-Adaptive Biased Coin Design (DBCD)

o Maximum Entropy Constraint Balance Randomization
(MazEnt)
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The following randomization procedures target allocation ratio

w=(wy:wy:...:wg), wr €N, GCD(wi,wy,...,wg)=1,
t= (p17p27~--7pK)7 Pk = &-

g Zz’}il Wk

Permuted Block Design (PBD)

Block Urn Design (BUD)

Mass Weighted Urn Design (M WU D)

Drop-the-Loser Urn Design (DLU D)

Doubly-Adaptive Biased Coin Design (DBCD)

Maximum Entropy Constraint Balance Randomization

(MazEnt)

All the designs depend on a tweak parameter the choice of

whzch s an open question!
< Sv r Optimal Designs & Adaptive Randomization 28-NOV-2017
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Charachteristics of randomization procedure:

e Imbalance

n K

1 . .

Imb(n) = — > (Ni() — jor)?
j=1 \ k=1
e Forcing Index
1 n K
Fl(n) = EZ > () = pr)”

7=1 \k=1

Optimal Designs & Adaptive Randomization 28-NOV-2017
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Imbalance plot
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Forcing index plot
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Imbalance vs. Forcing index
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Distributions of final allocation proportions
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Allocation ratio preserving (ARP) property

BUD (2) CRD DBCD (4) DL (4) MaxEnt (0.5) MWUD (4) PBD (1)

| -

IRARAN! 2

04- e W:’JMM b 5

0.3- g

0.2- ":
0.1-

g

0.4- =

Zos - Ittt 3

2 0.2- =

g 0.1- »

°

o

c =3

S 3

8 04- S

(5]

% 0.3- ﬁ §
0.2- - =
0.1- w
0.4- =
0.3- §
0.2- ;

0.1- ~ Mﬁhﬁ%ﬁhﬁ AAAAANN
0 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 100
subject
Optimal Designs & Adaptive Randomization 28-NOV-2017




UNIVERSITET Outline

@ Randomization procedures used to target optimal allocation

o Response-Adaptive Randomization (RAR)

Y Ryeznik & O S oV Optimal Designs & Adaptive Randomization 28-NOV-2017



UNIVERSITET RA R

Let us consider a dose-finding trial with time-to-event
outcomes and n subjects involved.

Median(T|z) = exp (o + bz + ngQ) log® (2)
A D-optimal optimal allocation as well as optimal treatments (doses)

are found as a solution of the following optimization problem

(m*vp*) = argga}§det|FIM(m,p, 0)|7 0= (607517B2ab)

)

Tk € [dminvdmaz]7 k=1,2....K
st. pr€l0,1], k=1,2....K

K
Zpk =1
k=1

Y Ryeznik & O Sverdlov Optimal Designs & Adaptive Randomization 28-NOV-2017
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“Ideal” case

o All subjects are available.

o They are just splitted into two groups

ny = np, N2 =~ Npy, n3 = nps.

(we assume that n1, ng and n3 are rounded up to integers, if
necessary)

Optimal Designs & Adaptive Randomization 28-NOV-2017
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However, there are potential problems with this approach:

o All n subjects are unavailable at the beginning of the trial.

e Model parameters 8 = (S, 1, 52, b) are unknown at the
beginning of the trial. Basically, the trial itself is conducted to
estimate @ (and perform other statistical analysis, such as, for
example, hypothesis testing of Hy : 81 = B2 = 0)

@ Subjects cannot be just “split” into groups. They must be
randomized in order to avoid selection bias.

Randomization is an essential component of any comparative
experiment.

Y Ryeznik & O Sverdlov Optimal Designs & Adaptive Randomization 28-NOV-2017
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o In practice, the n subjects enter the trial sequentially and must
be immediately randomized to one of K (= 3) treatments.

@ The enrolled subjects generate data, and these data can be used
to sequentially estimate the model parameters 6 = (B, 51, 52,b).

@ Thus, we construct response-adaptive randomization
procedures which converges to the desired optimal allocations.

Y Ryeznik & O Sverdlov Optimal Designs & Adaptive Randomization 28-NOV-2017
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Dose-finding studies for TTE outcomes

Adaptive design D-optimal design
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@ Randomization procedures used to target optimal allocation

o Covariate-Adaptive Randomization (CAR)
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@ In most randomized phase III clinical trials patients are
heterogeneous.

o Linear regression model with constant variance for the
primary outcome — the most efficient allocation is one for which
treatment numbers are balanced, both overall and across selected
covariates.

o Heteroscedastic or nonlinear model for the primary outcome
— the concept of balance is different from the linear model case.

o Covariate-balanced response-adaptive design.

Y Ryeznik & O S oV Optimal Designs & Adaptive Randomization 28-NOV-2017
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Why 1is it important to force balance over known covariates?
Let us consider a model where responses follow a linear regression
model with constant varince

Y =p+at+ 5z +e¢,

where
@ 1 is the overall mean.

« 1s the treatment effect.

[ is the covariate effect.

e tis an n-vector of treatment assignments (whose elements are 1
or -1).

@ z1 is an n-vector of covariate values.

e~ N(0,0%I).

Optimal Designs & Adaptive Randomization 28-NOV-2017
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Why is it important to force balance over known covariates?
Let

@ 0 = (u,a, ) be a vector of unknown parameters;

e X =[1,t, 2] be a design matrix (for simplicity, assume that z;
is centred and scaled, that is, 12} = 0, and 212} = 1);

° 0= (X’X)"1X'Y. be the least square estimator of 6;

The variance-covariance matrix of 8 is given by

Var [5} =o?(X'X)"L.

" Ryeznik & O S oV Optimal Designs & Adaptive Randomization 28-NOV-2017
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Why is it important to force balance over known covariates?
Particularly,

0_2

n—(2't)2 — (1't)?/n

Var [a] =

It is minimized when both

e 2t = 0 (balance over covariate).

e 1't = 0 (balanced treatment assignments).

Optimal Designs & Adaptive Randomization 28-NOV-2017
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CAR procedures
e Pocock-Simon’s “minimization” procedure (1975).
o Atkinson’s biased coin design (1982).

e Covariate-balanced randomization design (Yuan and Huang,
2010)
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UNIVERSITET Outline

@ Randomization procedures used to target optimal allocation

e Covariate-Adjusted Response-Adaptive Randomization (CARA)

Optimal Designs & Adaptive Randomization 28-NOV-2017



e CARA

UNIVERSITET

Two main reasons to consider CARA:

o Statistical: For nonlinear and heteroscedastic models, optimal
allocation may not be balanced across treatment arms.

o FEthical: The degree and direction of treatment effect may differ
for patient subgroups within a treatment = increase probability
of assigning the treatment that is most efficacious given the
patient’s covariate profile (personalized treatment).

Optimal Designs & Adaptive Randomization 28-NOV-2017
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CARA Randomization for Survival Trials®

e n patients are enrolled sequentially and are randomized to
treatments 1 and 2.

e For the j-th patient, survival time T}, conditional on covariates
z; is exponential with mean

Ai(z5) = exp (9;6,2]'), k=12,

where 0 = (0o, Ok1, - -, 0kp) and z; = (1,215, ..., 2p;) .

e T} is subject to independent right-censoring with 7; > 0.
° ljr = min(Tjvaj)a
° 5]]{7 = 1tjk:Tjk7
o (tjk,0;r) are independent, j =1,...,n5, k=1,2

Sverdlov O., Rosenberger W.F., Ryeznik Y. (2013) “Utility of covariate-adjusted response-adaptive
randomization in survival trials” Statistics in Biopharmaceutical Research 5(1), p. 38-53.
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Example: Redesigning a Survival Trial® (cetuximab trial in advanced
colorectal cancer)

o In a 21-month period, n = 572 eligible patients were randomized
at a 1:1 ratio among TRT 1 (cetuximab plus best supportive
care) and TRT 2 (best supportive care alone).

@ The primary endpoint was overall survival (OS).

o Effectiveness of cetuximab was significantly associated with
K-ras mutation status:
e Patients with wild-type K-ras tumors benefited from
cetuximab (median OS, 9.5 vs. 4.8 months; HR for death, 0.55).
o Patients with a colorectal tumor bearing mutated K-ras did
not benefit from cetuximab (median OS, 4.6 vs. 4.5 months; HR
for death, 0.98).

BKarapetis, C. S., Khambata-Ford, S., Jonker, D. J., et al. (2008). “K-ras mutations and benefit
from cetuximab in advanced colorectal cancer”. The New England Journal of Medicine, 359, p. 17571765
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Simulation Study Results (10,000 simulation runs)

n =572 Pocock-Simon CARA RAR
Na/n (5.D.) 0.500 (0.002) 0.588 (0.037) 0.583 (0.039)

Nao| Mo (S.D. 169|169 (1)’ 211|127 (16) 197|141 (14)
1| Ne1 és D§ 117117 1; 125/109 E13; 137|097 (11)
Deaths (5.D.) 372 éu 362 §12) 366 512)
Total Time (S.D.) 3076 (106) 3155 (113) 3132 (112)
0p0 (S.D.) 2,62 (0.11) 2,62 (0.10)  2.62 (0.10)
0a1 (S.D.) -0.68 (0.16)  -0.68 (0.15)  -0.68 (0.15)
0go (S.D.) 1.87 (0.09) 1.86 (0.11)  1.87 (0.10)
0g1 (5.D.) 0.02 (0.14) 0.03 (0.16)  0.02 (0.16)

» Because of treatment-covariate interaction, CARA resulted in greater
skewing to A in the wild-type K-ras subgroup than in the mutated K-ras
subgroup, whereas RAR had similar degree of skewing in the subgroups.

» CARA and RAR had, on average, 10 and 6 fewer deaths and greater total
survival time than the Pocock-Simon design.

» All three procedures had the same power and very similar M.L.E.’s.
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tmE  CIM Course for Master/PhD students
(Period IV 2018)

@ Introduction to clinical trials, adaptive designs, optimal adaptive
randomization procedures.

@ Choice of a target allocation for a multi-arm clinical trial.

@ Adaptive randomization designs to implement optimal allocation:

Allocation-adaptive randomization
Covariate-adaptive randomization
Response-adaptive randomization
Covariate-adjusted response-adaptive randomization

@ Case studies (with examples in R) and practical aspects of
implementing adaptive randomization
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